Localized Recrystallization in Cast Al-Si-Mg Alloy During Solution Heat Treatment: Dilatometric and Calorimetric Studies

نویسندگان

  • S. K. Chaudhury
  • V. Warke
  • S. Shankar
  • Diran Apelian
چکیده

During heat treatment, the work piece experiences a range of heating rates depending upon the sizes and types of furnace. When the Al-Si-Mg cast alloy is heated to the solutionizing temperature , recrystallization takes place during the ramp-up stage. The effect of heating rate on recrystallization in the A356 (Al-Si-Mg) alloy was studied using dilatometric and calorimetric methods. Recrystallization in as-cast Al-Si alloys is a localized event and is confined to the elasto-plastic zone surrounding the eutectic Si phase; there is no evidence of recrystallization in the center of the primary Al dendritic region. The size of the elasto-plastic zone is of the same order of magnitude as the Si particles, and recrystallized grains are observed in the elasto-plastic region near the Si particles. The coefficient of thermal expansion of Al is an order of magnitude greater than Si, and thermal stresses are generated due to the thermal mismatch between the Al phase and Si particles providing the driving force for recrystallization. In contrast, recrystalli-zation in Al wrought alloy (7075) occurs uniformly throughout the matrix, stored energy due to cold work being the driving force for recrystallization in wrought alloys. The activation energy for recrystallization in as-cast A356 alloy is 127 KJ/mole. At a slow heating rate of 4.3 K/min, creep occurs during the heating stage of solution heat treatment. However, creep does not occur in samples heated at higher heating rates, namely, 520, 130, and 17.3 K/min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Artificial Aging Treatment and Lubrication Modes on the Cutting Force and the Chip Surface Morphology when Drilling Al-Si-Mg (A356) Cast Alloys

This article reports the effects of various artificial aging methods and lubrication modes (dry, mist, wet) on the recorded cutting forces and chip morphology in drilling Al-Si-Mg (A356) cast alloys. In the course of this work, the work part sampled were as-received alloy (T0), solution heat-treated alloy (SHT) and then aged alloys at 155°C, 180°C, and 220°C (T4, T6, T61, T7), respectively. The...

متن کامل

Fluidized Bed Heat Treatment of Cast Al-Si-Cu-Mg Alloys

The effects of fluidized bed heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg cast alloys, namely,3 54 and 319, were studied. The heating rate in fluidized beds (FBs) is greater vis-a`-vis conventional electrical resistancef urnaces (CFs). The high heating ratei nF Bs increases the kinetics of metallurgical phenomena such as Si fragmentation and spherodization duri...

متن کامل

Effects of Rapid Heating on Solutionizing Characteristics of Al-Si-Mg Alloys Using a Fluidized Bed

Effects of rapid heat transfer using a fluidized bed on the heat-treating response of Al-Si-Mg alloys (both unmodified and Sr modified) were investigated. The heating rate in the fluidized bed is greater than in conventional air convective furnaces. Particle size analyses of eutectic Si showed that the high heating rate during fluidized bed solution heat treatment causes faster fragmentation an...

متن کامل

Effects of Various Ageing Heat Treatments on Microstructural Features and Hardness of Piston Aluminum Alloy

Piston aluminum alloys have different intermetallic phases, such as Cu3Al, Mg2Si ,and AlNi phases. The morphology and the distribution of such phases have important roles on mechanical properties of the piston material. Therefore, in this research, various ageing heat treatments on the mentioned material were done and the microstructural feature and the hardness were studi...

متن کامل

EVALUATION OFDISLOCATION STRUCTURE AND CRYSTALLITE SIZE IN WORN AL-SI ALLOY BY X-RAY DIFFRACTION

Abstract: powerful method for the characterization of microstructures of crystalline materials in terms of crystallite size anddislocation structures. In this paper the effect of the sliding on the microstructure of A356 in the as-cast and heattreated conditions are studied, The X-ray phase analysis shows that with increasing applied load, the dislocationdensity is increased, whereas the crysta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013